VI-UG-Math(CC)-XIII (NC)

2022

Full Marks - 80

Time - 3 hours The figures in the right-hand margin indicate marks Answer *all* questions

Part-I

1. Answer the following:

 1×12

- a) What is the value of complex number times 'zero' ?
- b) What is the domain of Arg $(\frac{1}{2})$?
- c) What is the centre and radius of |z 1 + 3i|?
- d) What is the order of a simple zero?
- e) If $z = z_0$ is a pole of order m, what is the expansion of f(z)?

f) What is the order of zero of e^{-1/z^2} ?

g) What is the rasidue of
$$\frac{1}{z^3 - z^5}$$
 at $z = \pm 1$?

[2]

- h) What are the solutions of $z^4 = i$.
- i) What are the residue of $\frac{z^3}{(z-1)(z-2)(z-3)}$ at $z = \infty$?

j) What is the value of
$$\int \frac{dz}{z-2}$$
 for $|z| = 3$?

k) If C is a unit circle about origin in positive sense what is the value of ∫ c^{-z}/Z²?
1) If C is a circle, |z| = 1, then what is the value of ∫ z dz ?

Part-II

2. Answer any *eight* of the following :

- 2×8
- a) Reduce $(1-i)^4$ to a real number.

b) Evaluate
$$\int_{c} \frac{\sin z}{\left(z - \frac{\pi}{4}\right)^3} dz$$

where c is the circle $\left|z - \frac{\pi}{4}\right| = \frac{1}{2}$?

c) Find whether $f(z) = \overline{z}$ is holomorphic?

- [3]
- d) Write the function $f(z) = z^3 + z + 1$ in the form u(x, y) + iv(x, y).
- e) Evaluate $\int_{\infty} \frac{e^{3z}}{z+i}$ if c is the circle |z+1+i| = 2?
- f) Evaluate $\int \frac{1}{(z-z_0)^2} dz$ where z_0 is any point within c?
- g) What are the zeros of $f(z) = \sin z \cos z$.
- h) Find the residue of $\frac{1}{(z^2 + a^2)^2}$ at z = ia.
- i) What are the poler of $f(z) = tan \frac{1}{2}$.
- j) Find the residue at z = 0 for $\frac{1}{z + z^2}$?

Part-III

3. Answer any *eight* of the following : 3×8

- a) Show that if $z_1 z_2 z_3 = 0$ then at least one of the three factors is zero.
- b) Show that the function $|z|^2$ is continuous everywhere.

[Turn over

L-6

d) Evaluate
$$\int \frac{dz}{z^2}$$
 where r is defined by $|z| = d$,
 $d > 0$?

e) Evaluate
$$\int \frac{z-1}{(z+1)^2(z-2)} dz$$
 where $c: |z-i|=2$.

f) Evaluate
$$\int_{c} \frac{e^{ax}}{z^2 + 1} dz$$
 where c is the circle $|z| = 2$?

g) Show that the function $\frac{z^2 + 4}{e^z}$ has an isolated essential singularity at $z = \infty$?

h) Show that $\frac{\sin(z-1)}{z-1}$ has removable singularity at z = 1? i) Calculate $\int \frac{dz}{z(z-2)^4}$ using residue formula. [5]

j) Evaluate $\int_{z} \frac{5z-2}{z(z-1)} dz$ using Cauchy's residue formula.

Part-IV

4. a) If a function f is continuous throughout a region R that is both closed and bounded, prove that there exists a non negative real number M such that |f(z)| ≤ M for all points z in R, where equality holds for at least one such z.

OR

b) Use mathematical induction to verify "If z_1 and z_2 are any two non zero complex numbers, then

$$(z_{1} + z_{2})^{n} = \sum_{k=0}^{n} {n \choose k} z_{1}^{k} z_{2}^{n-k}$$

n =(1, 2) k = (0, 1, 2....n)
 ${n \choose k} = \frac{n!}{k!(n-k)!}$

Prove that if f(z) is analytic in a simply connected 5. a) domain D and c is any closed curve then 6 $\int f(z) dz = 0$.

OR

Prove that if f(z) is analytic in the region D b) bounded by two closed curves c_1 and c_2 then

$$f(z_0) = \frac{1}{2\pi i} \left[\int_{z_1} \frac{f(z)}{z - z_0} dz - \int_{z_2} \frac{f(z)}{z - z_0} dz \right]$$

where z_0 is any point of D.

If f(z) is an analytic function in D prove that a) 6. unless f(z) is identically zero, there exists a neighbourhood of each point in D throughout which the function has no zero except possibly 6 at the point itself.

OR

State and prove Schwarz's reflection principle.

b)

a) If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour c, then prove that

$$\int_{c} f(z) dz = 2\pi i \operatorname{Res}_{z=0} \left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right) \right]$$
6

OR

b) let z_0 be an isolated singular point of a function f and suppose that $f(z) = \frac{\phi z}{(z - z_0)^m}$, m > 0 $\phi(z)$ is analytic and non zero at z_0 . Prove that $\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}.$

L-6-600

VI-UG-Math(CC)-XIV (NC)

2022

Full Marks - 80

Time - 3 hours

The figures in the right-hand margin indicate marks Answer *all* questions

Part-I

1. Answer the following : 1×12

- a) Let G be a cyclic group of order 7. What is the order of Aut(G)?
- b) What is the object of identity automorphism ?
- c) How many automorphisms are possible in z(+)?
- d) Write a sub group of $z_{30} \oplus z_{12}$ isomorphic to $z_6 \oplus z_4$.
- e) Write down the elements of $U_{7}(105)$?
- f) What is a fixed point ?
- g) What is the equation of S_3 ?
- h) What are the conjugacy classes of D_4 ?
- i) How many sylow 5 subgroups of S_5 are there ?
- j) What is the order of 2 sylow subgroups of A_4 ?
- k) How many elements of order 10 are in $z_{100} \oplus z_{25}$?
- 1) Are all sylow p-subgroups cyclic ?

L-44

[2]

Part-II

2. Answer any *eight* of the following : 2×8

- a) Define inner outomorhism.
- b) Let G be a group of order 4, $G = \{e, a, b, ab\}$ $a^2 = b^2 = e, ab = ba$. Determine A(G)?
- c) If G is a group on S_3 . Verify whether the mapping $T : x \rightarrow x^{-1}$ is an automorphism or not.
- d) Verify that a group of order 4 is isomorphic to $z_2 \oplus z_2$.
- e) Write down U(105) as a product of cyclic groups?
- f) Show that $z_2 \oplus z_{30} \approx z_6 \oplus z_{10}$.
- g) Define a sylow p-subgroup.
- h) What are the order of all sylow p-subgroup where G has order 18?
- i) What is the left action of G on X?
- j) If X = G, H is a subgrous of G, then show that G is an H-set under left multiplication.

Part-III

- 3. Answer any *eight* of the following 3×8
 - a) Construct a non abelian group of order 55.
 - b) Show that if $T \in A(G)$ then $T^{-1} \in A(G)$.

- c) For any group G, show that the commutator subgroup G' is a characteristic subgroup.
- d) Show that $z_2 \oplus z_3 \approx z_6$.
- e) Determine the number of elements of order 5 in $z_{25} \oplus z_5$.
- f) Verify that $z_2 \oplus z_{30} \neq z_{60}$.
- g) Show that a group of order 48 is not simple.
- h) Show that a group of order 33 has only one sylow 3-subgroup.
- i) Let $G = GL_2(R)$ and $X = R^2$. Then show that axioms of group action are satisfied under multiplication.
- j) Show that $A(G) \approx$ cylic group of order 2.

Part-IV

4. a) Let g be a fixed element of a group G. Prove that there is a mapping $T_g: G \to G$ defined by $Tg(x) = g^{-1}xg \ \forall x \in G$ is an automorphism of G. 7

OR

b) Let G be a group and ϕ is an automorphism of G. If $a \in G$ is of order O(a) > 0 then prove that $O(\phi(a)) = O(a)$.

[4]

3 SHKIM S

7

7

5. a) Prove that $|(g_1, g_2, ..., g_n)| = l \operatorname{cm} (|g_1|, |g_2| ..., |g_n|.$

OR

- b) Let G and H be finite cyclic group. Prove that G ⊕ H is cyclic if and only if |G| and |H| are relatively prime.
- 6. a) State the prove Index theorem.

OR

- b) Prove that if G is a finite group then G is isomorphic to some subgroup of S_n .
- 7. a) Let G be a finite group and P is a prime such that P divides 0(G). Then prove that G contains a subgroup of order P.

OR

b) Let G be a finite group and let P be dividing 0(G). Then the number of sylow P-subgroups is congruent to 1(mod P) and divides |G|.