VI-UG-Math(CC)-XIII (NC)

2022

Full Marks - 80

Time - 3 hours
The figures in the right-hand margin indicate marks

Answer all questions

Part-I

1. Answer the following :

a) What is the value of complex number times 'zero'?
b) What is the domain of $\operatorname{Arg}\left(\frac{1}{2}\right)$?
c) What is the centre and radius of $|z-1+3 i|$?
d) What is the order of a simple zero ?
e) If $z=z_{0}$ is a pole of order m, what is the expansion of $f(z)$?
f) What is the order of zero of $e^{-1 / z^{2}}$?
g) What is the rasidue of $\frac{1}{z^{3}-z^{5}}$ at $z= \pm 1$?
h) What are the solutions of $z^{4}=i$.
i) What are the residue of $\frac{z^{3}}{(z-1)(z-2)(z-3)}$ at $\mathrm{z}=\infty$?
j) What is the value of $\int \frac{d z}{z-2}$ for $|z|=3$?
k) If C is a unit circle about origin in positive sense what is the value of $\int \frac{c^{-z}}{Z^{2}}$?

1) If C is a circle, $|z|=1$, then what is the value of $\int \bar{z} d z$?

Part-II

2. Answer any eight of the following :
a) Reduce $(1-i)^{4}$ to a real number.
b) Evaluate $\int \frac{\sin z}{\left(z-\frac{\pi}{4}\right)^{3}} d z$
where c is the circle $\left|z-\frac{\pi}{4}\right|=\frac{1}{2}$?
c) Find whether $f(z)=\bar{z}$ is holomorphic ?
d) Write the function $f(z)=z^{3}+z+1$ in the form $u(x, y)+i v(x, y)$.
e) Evaluate $\int_{{ }^{2}} \frac{e^{3 z}+i}{i f}$ if is the circle $|z+1+\mathrm{i}|=2$?
f) Evaluate $\int_{c} \frac{1}{\left(z-z_{0}\right)^{2}} d z$ where z_{0} is any point within c ?
g) What are the zeros of $f(z)=\sin z-\cos z$.
h) Find the residue of $\frac{1}{\left(z^{2}+a^{2}\right)^{2}}$ at $z=i a$.
i) What are the poler of $f(z)=\tan \frac{1}{2}$.
j) Find the residue at $\mathrm{z}=0$ for $\frac{1}{\mathrm{z}+\mathrm{z}^{2}}$?

Part-III

3. Answer any eight of the following : 3×8
a) Show that if $z_{1} z_{2} z_{3}=0$ then at least one of the three factors is zero.
b) Show that the function $|z|^{2}$ is continuous everywhere.

[4]

c) Show that the function $e^{x}(\cos y+i \sin y)$ is holomorphic?
d) Evaluate $\int \frac{d z}{z^{2}}$ where r is defined by $|z|=d$, $\mathrm{d}>0$?
e) Evaluate $\int \frac{z-1}{(z+1)^{2}(z-2)} d z$ where $c:|z-i|=2$.
f) Evaluate $\int \frac{e^{a x}}{z^{2}+1} d z$ where c is the circle $|z|=2$?
g) Show that the function $\frac{z^{2}+4}{e^{z}}$ has an isolated essential singularity at $\mathrm{z}=\infty$?
h) Show that $\frac{\sin (z-1)}{z-1}$ has removable singularity

$$
\text { at } z=1 \text { ? }
$$

i) Calculate $\int \frac{d z}{z(z-2)^{4}}$ using residue formula.
j) Evaluate $\int \frac{5 z-2}{z(z-1)} d z$ using Cauchy's residue formula.

Part-IV

4.

a) If a function f is continuous throghout a region R that is both closed and bounded, prove that there exists a non negative real number M such that $|f(z)| \leq M$ for all points z in R, where equality holds for at least one such z .

OR

b) Use mathematical induction to verify "If z_{1} and z_{2} are any two non zero complex numbers, then

$$
\begin{aligned}
& \left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}\binom{n}{k} z_{1}^{k} z_{2}^{n-k} \\
& n=(1,2 \ldots .) k=(0,1,2 \ldots n) \\
& \binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

$$
16 \mid
$$

5. a) Prove that if $f(\mathrm{z})$ is analytic in a simply connected domain D and c is any closed curve then $\int_{c} f(z) d z=0$.

OR

b) Prove that if $f(z)$ is analytic in the region D bounded by two closed curves c_{1} and c_{2} then

$$
\mathrm{f}\left(\mathrm{z}_{0}\right)=\frac{1}{2 \pi \mathrm{i}}\left[\int_{\mathrm{c}_{1}} \frac{\mathrm{f}(\mathrm{z})}{\mathrm{z}-\mathrm{z}_{0}} \mathrm{dz}-\int_{\mathrm{L}_{2}} \frac{\mathrm{f}(\mathrm{z})}{\mathrm{z}-\mathrm{z}_{0}} \mathrm{dz}\right]
$$

where Z_{0} is any point of D.
6. a) If $f(z)$ is an analytic function in D prove that unless $f(z)$ is identically zero, there exists a neighbourhood of each point in D throughout which the function has no zero except possibly at the point itself.

OR
b) State and prove Schwarz's reflection principle.
7. a) If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour c , then prove that

$$
\begin{equation*}
\int_{\mathrm{c}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi i \underset{\mathrm{z}=0}{\operatorname{Res}}\left[\frac{1}{\mathrm{z}^{2}} \mathrm{f}\left(\frac{1}{\mathrm{z}}\right)\right] \tag{6}
\end{equation*}
$$

OR

b) let z_{0} be an isolated singular point of a function f and suppose that $\mathrm{f}(\mathrm{z})=\frac{\phi \mathrm{z}}{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{m}}}, \mathrm{m}>0$
$\phi(z)$ is analytic and non zero at z_{0}. Prove that

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!}
$$

VI-UG-Math(CC)-XIV (NC)

2022

Full Marks - 80
Time - 3 hours
The figures in the right-hand margin indicate marks
Answer all questions

Part-I

1. Answer the following :
a) Let G be a cyclic group of order 7. What is the order of Aut(G) ?
b) What is the object of identity automorphism ?
c) How many automorphisms are possible in $\mathrm{z}(+)$?
d) Write a sub group of $z_{30} \oplus z_{12}$ isomorphic to $z_{6} \oplus z_{4}$.
e) Write down the elements of $U_{7}(105)$?
f) What is a fixed point ?
g) What is the equation of S_{3} ?
h) What are the conjugacy classes of D_{4} ?
i) How many sylow 5 subgroups of S_{5} are there?
j) What is the order of 2 sylow subgroups of A_{4} ?
k) How many elements of order 10 are in $\mathrm{z}_{100} \oplus \mathrm{z}_{25}$?
1) Are all sylow p-subgroups cyclic ?

Part-II

2. Answer any eight of the follow
a) Define inner outomorhism.
b) Let G be a group of order $4, \mathrm{G}=\{\mathrm{e}, \mathrm{a}, \mathrm{b}, \mathrm{ab}\}$ $a^{2}=b^{2}=e, a b=b a$. Determine $A(G)$?
c) If G is a group on S_{3}. Verify whether the mapping $\mathrm{T}: \mathrm{x} \rightarrow \mathrm{x}^{-1}$ is an automorphism or not.
d) Verify that a group of order 4 is isomorphic to $z_{2} \oplus z_{2}$.
e) Write down $U(105)$ as a product of cyclic groups?
f) Show that $\mathrm{z}_{2} \oplus \mathrm{z}_{30} \approx \mathrm{z}_{6} \oplus \mathrm{z}_{10}$.
g) Define a sylow p-subgroup.
h) What are the order of all sylow p-subgroup where G has order 18 ?
i) What is the left action of G on X ?
j) If $X=G, H$ is a subgrous of G, then show that G is an H -set under left multiplication.

Part-III

3. Answer any eight of the following
a) Construct a non abelian group of order 55 .
b) Show that if $T \in A(G)$ then $T^{-1} \in A(G)$.
c) For any group G, show that the commutator subgroup G^{\prime} is a characteristic subgroup.
d) Show that $\mathrm{z}_{2} \oplus \mathrm{z}_{3} \approx \mathrm{z}_{6}$.
e) Determine the number of elements of order 5 in $\mathrm{z}_{25} \oplus \cdot \mathrm{z}_{5}$.
f) Verify that $z_{2} \oplus z_{30} \neq z_{60}$.
g) Show that a group of order 48 is not simple.
h) Show that a group of order 33 has only one sylow 3-subgroup.
i) Let $G=\mathrm{GL}_{2}(\mathrm{R})$ and $\mathrm{X}=\mathrm{R}^{2}$. Then show that axioms of group action are satisfied under mutliplication.
j) Show that $A(G) \approx$ cylic group of order 2 .

Part-IV

4. a) Let g be a fixed element of a group G. Prove that there is a mapping $\mathrm{T}_{\mathrm{g}}: \mathrm{G} \rightarrow \mathrm{G}$ defined by $\mathrm{Tg}(\mathrm{x})=\mathrm{g}^{-1} \mathrm{xg} \forall \mathrm{x} \in \mathrm{G}$ is an automorphism of G.

7

OR

b) Let G be a group and ϕ is an automorphism of G. If $a \in G$ is of order $O(a)>0$ then prove that $\mathrm{O}(\phi(\mathrm{a}))=\mathrm{O}(\mathrm{a})$.
5. a) Prove that

$$
\left|\left(\mathrm{g}_{1}, \mathrm{~g}_{2} \ldots, \mathrm{~g}_{\mathrm{n}}\right)\right|=\text { lcm }\left(\left|\mathrm{g}_{1}\right|,\left|\mathrm{g}_{2}\right| \ldots .\left|\mathrm{g}_{\mathrm{n}}\right| .\right.
$$

OR
b) Let G and H be finite cyclic group. Prove that $\mathrm{G} \oplus \mathrm{H}$ is cyclic if and only if $|\mathrm{G}|$ and $|\mathrm{H}|$ are
relatively prime.
6. a) State the prove Index theorem.

OR

b) Prove that if G is a finite group then G is isomorphic to some subgroup of S_{n}.
7. a) Let G be a finite group and P is a prime such that P divides $0(\mathrm{G})$. Then prove that G contains a subgroup of order P .

OR

b) Let G be a finite group and let P be dividing $0(\mathrm{G})$. Then the number of sylow P -subgroups is congruent to $1(\bmod P)$ and divides $|G|$.

